Synchronized peak-rate years of global resources use

| January 24, 2015 | Leave a Comment

Item Link: Access the Resource

File: Download

Year of Publication: 2014

Publisher: The Resilience Alliance

Author(s): Ralf Seppelt, Ameur M. Manceur, Jianguo Liu, Eli P. Fenichel, Stefan Klotz

Journal: Ecology and Society

Volume: 19: 4

Seppelt et al. estimate the peak-rate years for resources ranging from cassava to oil and explore the relationship among them.

ABSTRACT: Many separate studies have estimated the year of peak, or maximum, rate of using an individual resource such as oil. However, no study has estimated the year of peak rate for multiple resources and investigated the relationships among them. We exploit time series on the appropriation of 27 global renewable and nonrenewable resources. We found 21 resources experienced a peak-rate year, and for 20 resources the peak-rate years occurred between 1960-2010, a narrow time window in the long human history. Whereas 4 of 7 nonrenewable resources show no peak-rate year, conversion to cropland and 18 of the 20 renewable resources have passed their peak rate of appropriation. To test the hypothesis that peak-rate years are synchronized, i.e., occur at approximately the same time, we analyzed 20 statistically independent time series of resources, of which 16 presented a peak-rate year centered on 2006 (1989-2008). We discuss potential causal mechanisms including change in demand, innovation and adaptation, interdependent use of resources, physical limitation, and simultaneous scarcity. The synchrony of peak-rate years of multiple resources poses a greater adaptation challenge for society than previously recognized, suggesting the need for a paradigm shift in resource use toward a sustainable path in the Anthropocene.

The views and opinions expressed through the MAHB Website are those of the contributing authors and do not necessarily reflect an official position of the MAHB. The MAHB aims to share a range of perspectives and welcomes the discussions that they prompt.