It is raining plastic

| January 8, 2020 | Leave a Comment

Item Link: Access the Resource

Media Type: Article - Recent

Publication Info: USGS

Date of Publication: May 14, 2019

Author(s): Gregory Wetherbee, Austin Baldwin, James Ranville


Atmospheric deposition samples were collected using the National Atmospheric Deposition Program / National Trends Network (NADP/NTN) at 6 sites in the Denver-Boulder urban corridor and 2 adjacent sites in the Colorado Front Range. Weekly wet-only atmospheric deposition samples collected at these sites during winter-summer of 2017 were filtered (0.45 micrometers, polyethersulfone) to obtain particulates washed from the atmosphere (washout).

Plastics were identified on over 90 percent of the filters. The plastic materials are mostly fibers that are only visible with magnification (~40X). Fibers were present in a variety of colors; the most frequently observed color was blue followed by red > silver > purple > green > yellow > other colors. Plastic particles such as beads and shards were also observed with magnification. More plastic fibers were observed in samples from urban sites than from isolated, montane sites. However, frequent observation of plastic fibers in washout samples from the isolated Loch Vale site in Rocky Mountain National Park (elevation 3,159 meters) suggests that wet-deposition of plastic is ubiquitous and not just an urban condition.

The mass of plastic in even the most concentrated samples was not large enough to weigh or reliably estimate. Developing a routine capability to calculate plastic wet-deposition loads is not possible with current technology. Counting plastic fibers under a microscope and multiplying the counts by a mean mass per fiber might be possible, but it is tedious, expensive, and has large inherent error. A means to estimate the recovery of the plastic materials from the NADP samples is needed. However, saving the NADP filters for subsequent analysis would make a washout deposition network possible with very little added expense, and methods could be developed to more accurately estimate plastic loads using the NTN. It is unclear how these plastic materials are accumulating and being assimilated in the environment and biota. Moreover, the potential effects of these materials on biota is not understood.

Find the abstract here or read the full article online.

The views and opinions expressed through the MAHB Website are those of the contributing authors and do not necessarily reflect an official position of the MAHB. The MAHB aims to share a range of perspectives and welcomes the discussions that they prompt.